ISFET Glucose Sensor with Palladium Hydrogen Selective Membrane
نویسندگان
چکیده
منابع مشابه
An Integrated ISFET Sensor Array
A monolithically integrated ISFET sensor array and interface circuit are described. A new high-density, low-power source-drain follower was developed for the sensor array. ISFETs were formed by depositing Au/Ti extended-gate electrodes on standard MOSFETs, then thin silicon nitride layers using catalytic chemical vapor deposition and/or SU-8 protective layers were formed on the extended-gate el...
متن کاملRoom Temperature Hydrogen Sensor Based on Single-Electron Tunneling Between Palladium Nanoparticles
In this paper, we present the results of single-electron tunneling in two-dimensional (2D) hexagonal closed packed arrays of palladium nanoparticles. After inspecting the emergence of Coulomb blockade phenomena, we demonstrate the possibilities of using these arrays as a single-electron tunneling based hydrogen sensor. We assumed arrays of palladium nanoparticles with diameters of 3.5 and 6...
متن کاملNanostructured Palladium-Doped Silica Membrane Layer Synthesis for Hydrogen Separation: Effect of Activated Sublayers
Palladium doped silica membranes were synthesized by the sol-gel method using two different procedures. The first palladium-doped silica membrane (M1) was synthesized with a coating of four layers of silica-palladium sol. The second membrane (M2) was synthesized with a coating of two silica layers followed by a coating of two silica-palladium layers. Scanning electron microscopy (SEM) proved th...
متن کاملPalladium Nanoparticles Decorated Single-Walled Carbon Nanotube Hydrogen Sensor
We developed a simple and cost-effective fabrication technique to construct a hydrogen nanosensor by decorating single-walled carbon nanotubes with Pd nanoparticles. By varying the sensor’s synthesis conditions (e.g., Pd electrodeposition charge, deposition potential, and initial baseline resistance of the SWNT network), the sensing performance was optimized. The optimized sensor showed excelle...
متن کاملPalladium nanoparticle-based surface acoustic wave hydrogen sensor.
Palladium (Pd) nanoparticles (5-20 nm) are used as the sensing layer on surface acoustic wave (SAW) devices for detecting H2. The interaction with hydrogen modifies the conductivity of the Pd nanoparticle film, producing measurable changes in acoustic wave propagation, which allows for the detection of this explosive gas. The nanoparticle-based SAW sensor responds rapidly and reversibly at room...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Sensor Science and Technology
سال: 2012
ISSN: 1225-5475
DOI: 10.5369/jsst.2012.21.2.90